Name:

Factoring Trinomials

Remember expanding the following expression?

$$
\begin{gathered}
(2 x+3)(x-4)=2 x^{2}+3 x-8 x-12 \\
=2 x^{2}-5 x-12
\end{gathered}
$$

In this unit, we want to reverse that process. We want to do this:

$$
2 x^{2}-5 x-12=(2 x+3)(x-4)
$$

In order to do so, we'll use factoring by grouping. This means we'll need to find the right factors. We will do this by setting up a table. Before we do this, look at the coefficients. We'll call them A, B, and C.

$$
\begin{gathered}
\underbrace{2 x^{2}}_{A} \underbrace{-5 x}_{B} \underbrace{-12}_{C} \\
A=2, B=-5, \text { and } C=-12 .
\end{gathered}
$$

Setting Up a Table

The first column of our table is the product of A and C. The second column is simply the value of B.

In the first column you want to put two numbers that multiply to give you -24. In the second column, you'll find their sum. When you get to two numbers that give you the sum of -5 , you can stop.

Filling out the Table

Let's start filling out the table with two numbers that multiply to give me -24 and then finding their sum.

$A \cdot C=-24$ Product	$B=-5$ Sum
$-2,12$	10
$8,-3$	5
$-8,3$	-5

So -8 and 3 are the two numbers we are looking for. Next, we split up our middle term, B using the numbers we got:

$$
\begin{gathered}
2 x^{2}-5 x-12= \\
2 x^{2}-8 x+3 x-12
\end{gathered}
$$

Finally, we factor by grouping:

$$
\begin{aligned}
& \underbrace{2 x^{2}-8 x}_{2 x(x-4)}+\underbrace{3 x-12}_{3 x(x-4)}=2 x(x-4)+3(x-4) \\
& 2 x(x-4)+3(x-4)=(2 x+3)(x-4)
\end{aligned}
$$

Task: Factor $5 x^{2}+6 x-8$
Solution: First, we find A, B, and C after our polynomial is in order from largest to smallest powers.

$$
A=5, B=6, \text { and } C=-8 .
$$

Next, we set up the table. The product of A and C is in the first column. B is in the second.

So we need to find the two numbers that multiply to give us -40 and add up to give us 6 .

After some trying, you'll find these numbers to be 10 and -4 .

$$
5 x^{2}+6 x-8=5 x^{2}+10 x-4 x-8
$$

Finally, we factor by grouping:

$$
\begin{aligned}
& \underbrace{5 x^{2}+10 x}_{5 x(x+2)}-\underbrace{4 x-8}_{-4(x+2)}=5 x(x+2)-4(x+2) \\
& 5 x(x+2)-4(x+2)=(5 x-4)(x+2)
\end{aligned}
$$

Problem Set

Factor the following:

1. $3 p^{2}-2 p-5=$
2. $2 n^{2}+3 n-9=$
3. $5 n^{2}+19 n+12=$
4. $2 v^{2}+11 v+5=$
5. $2 n^{2}+5 n+2=$
6. $3 n^{2}-8 n+4=$
7. $5 x^{2}-18 x+9=$
8. $4 n^{2}-15 n-25=$
9. $4 n^{2}-17 n+4=$
10. $6 n^{2}+5 n-6=$
